SPECIAL ISSUE

CIRCUIT TECHNOLOGY FOR ULTRA-LOW POWER (ULP)
Edited by R. H. Reuss and M. Fritze

144 SmartReflex Power and Performance Management Technologies for 90 nm, 65 nm, and 45 nm Mobile Application Processors
By G. Gammie, A. Wang, H. Mair, R. Lagerquist, M. Chau, P. Royannez, S. Gunrajarao, and U. Ko
[INVITED PAPER] Industry standardization of ultra-low-power designs for wireless devices allows new tools and methods to be incorporated into the design flow as they mature.

By S. K. Gupta, A. Raychowdhury, and K. Roy
[INVITED PAPER] When the supply voltage is less than the threshold value needed to sustain normal operation, useful digital circuit performance can be obtained by using leakage current for computation.

191 Technologies for Ultradyneynamic Voltage Scaling
By A. P. Chandrakasan, D. C. Daly, D. E. Finckelstein, J. Kwong, Y. K. Ramadass, M. E. Sinanoglu, V. Sze, and N. Verma
[INVITED PAPER] Circuits such as logic cells, static random access memories, analog-digital converters and dc-dc converters can be used as building blocks for applications that can function efficiently over a wide range of supply voltages.

215 Practical Strategies for Power-Efficient Computing Technologies
By L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus, R. H. Dennard, and W. Haensch
[INVITED PAPER] An eightfold improvement in power efficiency can be achieved without loss of performance for modestly parallelizable CMOS-based computer systems.

237 Ultra-low-Power Design in Near-Threshold Region
By D. Marković, C. C. Wang, L. P. Alarcón, T.-T. Liu, and J. M. Rabaei
[INVITED PAPER] New basic logic that selects between possible output values using a sense amplifier may be able to dramatically improve ultralow-power system performance.

By R. G. Drechsler, M. Wieczorek, D. Blaauw, D. Sylvester, and T. Mudge
[INVITED PAPER] Future computer systems promise to achieve an energy reduction of 100 or more times with memory design, device structure, device fabrication techniques, and clocking, all optimized for low-voltage operation.

On the Cover: Our cover illustration this month includes a single candle to suggest the idea of new circuit designs that require only ultralow power to operate effectively in a new generation of electronic devices.

DEPARTMENTS

135 POINT OF VIEW
Heterogeneous Networking: An Enabling Paradigm for Ubiquitous Wireless Communications
By J. A. Khan and T. Hanzo

139 SCANNING THE ISSUE
Introduction to Special Issue on Circuit Technology for ULP
By R. H. Reuss and M. Fritze

346 FUTURE SPECIAL ISSUES/SPECIAL SECTIONS
SPECIAL ISSUE: CIRCUIT TECHNOLOGY FOR ULTRA-LOW POWER (ULP)

267 Flexible Circuits and Architectures for Ultralow Power
By B. H. Calhoun, J. E. Ryan, S. Khan, M. Putic, and J. Lach
[INVITED PAPER] A programmable gate array optimized for ultralow-power operation may provide hardware flexibility and allow rapid low-cost implementation of many new applications.

283 Power and Energy Perspectives of Nonvolatile Memory Technologies
By N. Derkacobian, S. C. Hollmer, N. Gilbert, and M. N. Kozicki
[INVITED PAPER] Memory cells that store information by modulating the resistance of a dielectric may provide nonvolatile memory for next-generation ultralow-energy applications.

299 Ultralow-Power Operation in Subthreshold Regimes Applying Clockless Logic
[INVITED PAPER] New logic circuits promise to provide exceptional throughput and energy savings when the supply voltage is less than the threshold value needed to sustain normal operation.

315 Zero-Crossing-Based Ultra-Low-Power A/D Converters
By H.-S. Lee, L. Brooks, and C. G. Sodini
[INVITED PAPER] A/D converters that can immediately detect when the input voltage is zero, promise greatly reduced power consumption and elimination of gain and stability concerns.

333 FDSOI Process Technology for Subthreshold-Operation Ultralow-Power Electronics
By S. A. Vitale, P. W. Wyatt, N. Checka, J. Kedzierski, and C. L. Keast
[INVITED PAPER] Silicon-on-insulator devices designed for optimum operation at 0.3 V promise longer operational life than conventional application-specific integrated circuits.